
The GPU Sharing Playbook: Strategies 
for Resource Optimisation

Dr Martin Callaghan
Principal Consultant



A bit about me – and Red Oak
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• Previously an academic in CS/ AI at a Russell Group 
University

• Background in HPC and Digital Research Infrastructure

• Now a Consultant at Red Oak Consulting

• (Lots of Cloud, HPC and AI…)

• Used to large numbers of users with disparate demands!



What we are going to talk about …
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• Overview of GPU demands in modern AI/ML

• Why GPU sharing is becoming increasingly important 
(costs, sustainability, resource limitations)

• Special considerations for industries like fintech (data 
security, competitive advantage, etc.)



Big demand for GPUs (and other accelerators)
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An AI primer: Training vs Inference
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Training:

Compute Pattern: Intensive, sustained GPU utilisation (80-100%)

Memory Usage: High requirements for parameters, gradients

Duration: Long-running processes (hours to weeks)

Data Flow: Regular, predictable batches with high throughput 
needs

Scaling Strategy: Benefits from multi-GPU parallelism and 
distributed training



An AI primer: Training vs Inference
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Inference:

Compute Pattern: Bursty, often lower average utilisation (20-
60%)

Memory Usage: Lower per-operation but can spike with 
concurrent requests

Duration: Short operations (milliseconds to seconds)

Data Flow: Irregular, often unpredictable request patterns

Scaling Strategy: Benefits from batching and serving multiple 
models simultaneously



IRL: GPU Utilisation
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IRL: GPU Memory
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A couple of extra points…
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Fine-tuning vs full training: taking an already trained model and 
recomputing just some of the weights with new data – often to 
create a domain specialised model (far less computationally 
expensive)

Batch inference vs inference: scheduled processing of chunks of 
requests – optimising for throughput/ efficiency rather than 
response time



The challenges  of GPU sharing
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GPUs are a rare(r) 
resource. It’s good 
to share – BUT be 
aware of:

Proprietary model 
protection 
concerns

Regulatory 
compliance 
requirements

Risk aversion to 
shared 
infrastructure

"GPU hoarding" 
culture



So what are our options?
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Assuming classic HPC (and not fancy stuff like 
K8S):

• Hardware Approaches

• Software/Middleware Solutions

• Workload Optimisations

• Organisational Approaches (behavioural nudges)
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Hardware Options (1): NVIDIA MIG
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What it is: Hardware-level GPU partitioning technology for NVIDIA 
datacentre GPUs (Blackwell/ Hopper – up to 7 virtual GPUs)

Key Advantages

Strong Isolation: Complete hardware-level separation with dedicated 
resources

Performance Predictability: Eliminates "noisy neighbour" problems 
with guaranteed resources

Security: Ideal for multi-tenant environments with sensitive 
workloads

Efficiency: Improves overall GPU utilisation for smaller workloads
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Hardware Options (2): IBM Spectrum Symphony
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What it is: Enterprise workload management software for GPU 
resource scheduling

Key Advantages

Flexible Allocation: Time-slicing approach allows dynamic resource 
sharing

Policy Control: Fine-grained scheduling policies for workload 
prioritisation

Workload Diversity: Handles mixed HPC, AI/ML and analytics jobs

Enterprise Features: Robust accounting, reporting and financial 
services integration



Hardware Options (2): IBM Spectrum Symphony
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Key Limitations

Cost Factor: Significant licensing expenses for enterprise deployment

Management Complexity: Requires specialised expertise to configure 
optimally

Performance Variability: Potential "noisy neighbour" effects without 
careful tuning

Operational Overhead: Additional layer that can impact performance



Other (hardware) options:
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NVIDIA MPS (Multi-Process Service)

Software-based solution for GPUs

• Enables concurrent kernel execution from multiple 
processes

• Limited isolation with shared memory space
(security concerns)



Other (hardware) options:
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SLURM with GPU Scheduling

Open-source scheduler with built-in GPU allocation 
capabilities

• Supports time-slicing and GPU constraint 
specifications

• Provides account-based fair-share but lacks true 
dynamic sharing



Software/ Middleware Options:
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Container-Based Solutions

• NVIDIA Docker/Kubernetes 
GPU Operators for 
containerised workloads

• Fractional GPU libraries (like 
Fractional GPUs, GPU Flex)

• Balances isolation with sharing 
efficiency
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Workload optimisation :
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Job Scheduling Strategies

• Preemptive Scheduling - Priority-based job interruption for critical 
workloads

• Gang Scheduling - Coordinated allocation for multi-GPU/node 
workloads

• Fair Share - Resource allocation based on historical usage patterns

• Deadline-driven - Ensuring time-sensitive workloads complete on 
schedule



Workload optimisation :
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Queue Management Approaches

• Hierarchical Queues - Organized by department, project, or job 
type

• Dynamic Backfilling - Filling idle resources without delaying 
prioritised jobs

• Resource Reservation - Pre-allocating GPUs for anticipated high-
priority work

• Burst Queues - Temporary expansion into cloud resources during 
peak demand



Workload optimisation :
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Technical Optimisation Approaches

• Batching Optimisation - Right-sizing batch jobs for maximum 
GPU utilisation

• Mixed Precision Training - Using lower precision formats 
(FP16/BF16) where appropriate

• Gradient Accumulation - Enabling larger effective batch sizes with 
limited memory

• Model Parallelism - Splitting models across multiple GPUs for 
oversized workloads



Behavioural/ Organisational Approaches:

Commercial in confidence

Governance Structures

• Resource Committees - Cross-functional 
teams making allocation decisions

• Transparent Policies - Clear documentation of 
prioritisation rules

• Regular Review Cycles - Periodic assessment 
of allocation effectiveness

• Escalation Paths - Defined processes for 
urgent access requests
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Behavioural/ Organisational Approaches:
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User Education & Culture

• GPU Efficiency Training - Teaching best 
practices for code optimization

• Resource Awareness - Fostering 
understanding of shared resource impacts

• Cross-team Collaboration - Encouraging 
workload coordination

• Incentivised Efficiency - Rewarding teams 
that optimize GPU utilisation
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Behavioural/ Organisational Approaches:
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Policy Implementation

• Usage Quotas - Establishing fair allocation 
limits by team/project

• Chargeback Models - Department billing for 
actual GPU consumption

• Time-sharing Windows - Designated access 
periods for different groups

• Resource Forecasting - Proactive planning for 
future GPU requirements
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In Summary:
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1. Start with understanding workloads

2. Adopt a multi-layered approach

3. Consider isolation requirements

4. Monitor and measure

5. Build the right culture

6. Match solutions to maturity



That’s all folks!
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Questions/ Comments?
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