The GPU Sharing Playbook: Strategies for Resource Optimisation

Dr Martin Callaghan Principal Consultant

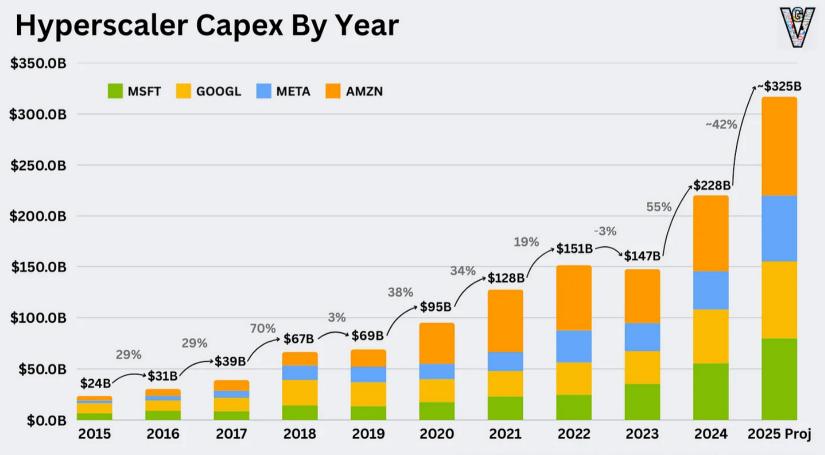
A bit about me – and Red Oak

- Previously an academic in CS/ AI at a Russell Group University
- Background in HPC and Digital Research Infrastructure
- Now a Consultant at Red Oak Consulting
- (Lots of Cloud, HPC and Al...)
- Used to large numbers of users with disparate demands!

What we are going to talk about ...

- **Overview** of GPU demands in modern AI/ML
- **Why** GPU sharing is becoming increasingly important (costs, sustainability, resource limitations)
- **Special considerations** for industries like fintech (data security, competitive advantage, etc.)

Big demand for GPUs (and other accelerators)



Source: Company Reports; 2025 includes company & analyst projections.

An Al primer: Training vs Inference

Training:

Compute Pattern: Intensive, sustained GPU utilisation (80-100%)

Memory Usage: High requirements for parameters, gradients

Duration: Long-running processes (hours to weeks)

Data Flow: Regular, predictable batches with high throughput needs

Scaling Strategy: Benefits from multi-GPU parallelism and distributed training

An Al primer: Training vs Inference

Inference:

Compute Pattern: Bursty, often lower average utilisation (20-60%)

Memory Usage: Lower per-operation but can spike with concurrent requests

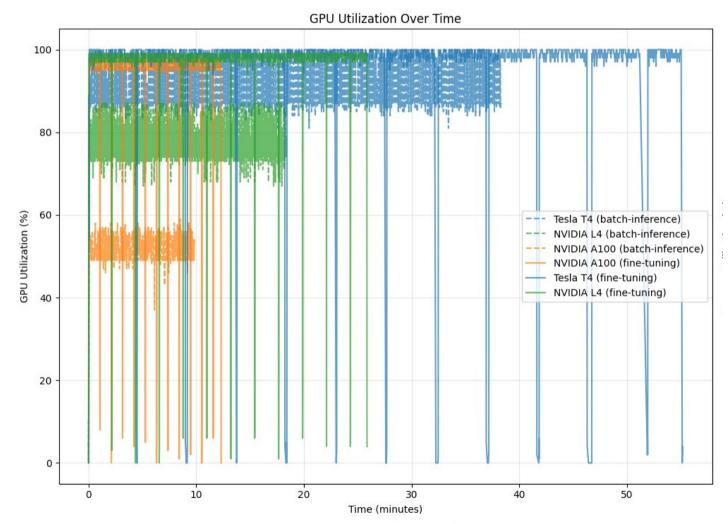
Duration: Short operations (milliseconds to seconds)

Data Flow: Irregular, often unpredictable request patterns

Scaling Strategy: Benefits from batching and serving multiple models simultaneously

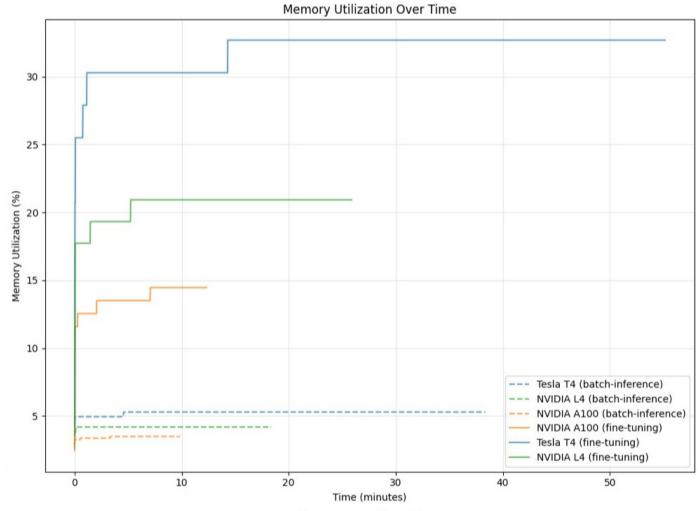
6

IRL: GPU Utilisation



7

IRL: GPU Memory



Temperature Over Time

A couple of extra points...

Fine-tuning vs full training: taking an already trained model and recomputing just some of the weights with new data – often to create a domain specialised model (**far** less computationally expensive)

Batch inference vs inference: scheduled processing of chunks of requests – optimising for throughput/ efficiency rather than response time

The challenges of GPU sharing

GPUs are a rare(r) resource. It's good to share – BUT be aware of:

Proprietary model protection concerns

Regulatory compliance requirements

Risk aversion to shared infrastructure

So what are our options?

Assuming classic HPC (and not fancy stuff like K8S):

- Hardware Approaches
- Software/Middleware Solutions
- Workload Optimisations
- Organisational Approaches (behavioural *nudges*)

Hardware Options (1): NVIDIA MIG

What it is: Hardware-level GPU partitioning technology for NVIDIA datacentre GPUs (Blackwell/ Hopper – up to 7 virtual GPUs)

Key Advantages

Strong Isolation: Complete hardware-level separation with dedicated resources

Performance Predictability: Eliminates "noisy neighbour" problems with guaranteed resources

Security: Ideal for multi-tenant environments with sensitive workloads

Efficiency: Improves overall GPU utilisation for smaller workloads

Hardware Options (1): NVIDIA MIG

What it is: Hardware-level GPU partitioning technology for NVIDIA datacentre GPUs (Blackwell/ Hopper – up to 7 virtual GPUs)

Key Advantages

Strong Isolation: Complete hardware-level separation with dedicated resources

Performance Predictability: Eliminates "noisy neighbour" problems with guaranteed resources

Security: Ideal for multi-tenant environments with sensitive workloads

Efficiency: Improves overall GPU utilisation for smaller workloads

Hardware Options (2): IBM Spectrum Symphony

What it is: Enterprise workload management software for GPU resource scheduling

Key Advantages

Flexible Allocation: Time-slicing approach allows dynamic resource sharing

Policy Control: Fine-grained scheduling policies for workload prioritisation

Workload Diversity: Handles mixed HPC, AI/ML and analytics jobs

Enterprise Features: Robust accounting, reporting and financial services integration

Hardware Options (2): IBM Spectrum Symphony

Key Limitations

Cost Factor: Significant licensing expenses for enterprise deployment

Management Complexity: Requires specialised expertise to configure optimally

Performance Variability: Potential "noisy neighbour" effects without careful tuning

Operational Overhead: Additional layer that can impact performance

Other (hardware) options:

NVIDIA MPS (Multi-Process Service)

Software-based solution for GPUs

- Enables concurrent kernel execution from multiple processes
- Limited isolation with **shared memory space** (security concerns)

Other (hardware) options:

SLURM with GPU Scheduling

Open-source scheduler with built-in GPU allocation capabilities

- Supports **time-slicing** and GPU constraint specifications
- Provides **account-based fair-share** but lacks true dynamic sharing

Software/ Middleware Options:

Container-Based Solutions

- NVIDIA Docker/Kubernetes GPU Operators for containerised workloads
- Fractional GPU libraries (like Fractional GPUs, GPU Flex)
- Balances isolation with sharing efficiency

Workload optimisation :

Job Scheduling Strategies

- Preemptive Scheduling Priority-based job interruption for critical workloads
- Gang Scheduling Coordinated allocation for multi-GPU/node workloads
- Fair Share Resource allocation based on historical usage patterns
- **Deadline-driven** Ensuring time-sensitive workloads complete on schedule

Workload optimisation :

Queue Management Approaches

- Hierarchical Queues Organized by department, project, or job type
- **Dynamic Backfilling** Filling idle resources without delaying prioritised jobs
- Resource Reservation Pre-allocating GPUs for anticipated highpriority work
- Burst Queues Temporary expansion into cloud resources during peak demand

Workload optimisation :

Technical Optimisation Approaches

- **Batching Optimisation** Right-sizing batch jobs for maximum GPU utilisation
- **Mixed Precision Training** Using lower precision formats (FP16/BF16) where appropriate
- **Gradient Accumulation** Enabling larger effective batch sizes with limited memory
- **Model Parallelism** Splitting models across multiple GPUs for oversized workloads

Behavioural/Organisational Approaches:

Governance Structures

- **Resource Committees** Cross-functional teams making allocation decisions
- **Transparent Policies** Clear documentation of prioritisation rules
- **Regular Review Cycles** Periodic assessment of allocation effectiveness
- **Escalation Paths** Defined processes for urgent access requests

Behavioural/Organisational Approaches:

User Education & Culture

- **GPU Efficiency Training** Teaching best practices for code optimization
- **Resource Awareness** Fostering understanding of shared resource impacts
- Cross-team Collaboration Encouraging
 workload coordination
- **Incentivised Efficiency** Rewarding teams that optimize GPU utilisation

Behavioural/Organisational Approaches:

Policy Implementation

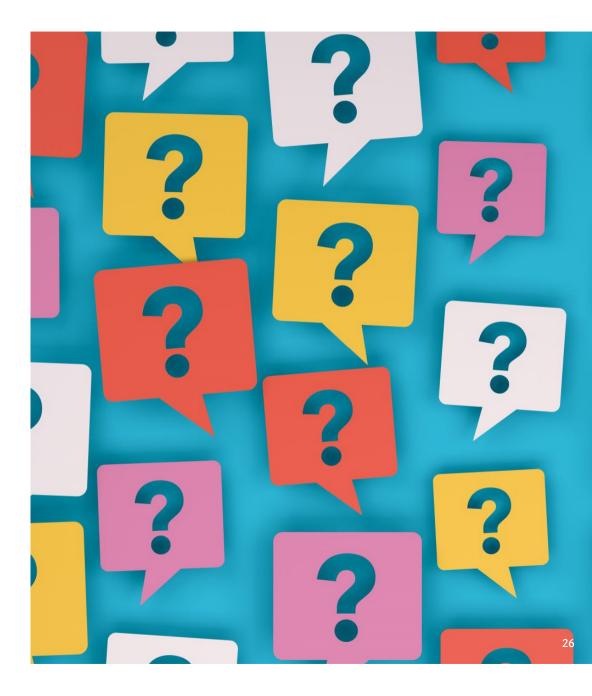
- Usage Quotas Establishing fair allocation limits by team/project
- **Chargeback Models** Department billing for actual GPU consumption
- **Time-sharing Windows** Designated access periods for different groups
- **Resource Forecasting** Proactive planning for future GPU requirements

In Summary:

- 1. Start with understanding workloads
- 2. Adopt a multi-layered approach
- 3. Consider isolation requirements
- 4. Monitor and measure
- 5. Build the right culture
- 6. Match solutions to maturity

That's all folks!

Questions/ Comments?



www.redoakconsulting.co.uk